Membrane Induced Folding of a cationic ß-hairpin

We recently developed a minimalistic coarse-grained model for lipids and peptides by using the Drude oscillator approach to model the  electrostatic component of Hydrogen bonds. With our models, we were able to simulate membrane induced folding of a cationic ß-hairpin, SVS-1 on POPS model bilayer.

Here is a short animation:

MSO8AAFC3CC173Colors: Hydrophobic tails: green; Serine: cyan; Ester: purple; Phosphate: tan;Peptide backbone: black;LYS: crimson and VAL side chain: pink. All bead sizes exaggerated for clarity. 

You can see the peptide fold and freely diffuse on the surface of the membrane.

Another cool thing is that we find membrane-induced peptide folding to be driven by both (a) cooperativity in peptide self interaction (something that is expected for folding) and (b) cooperativity in membrane-peptide interaction (which is pretty cool). For more, check out our latest article.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s